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The completeness of controlled systems optimization depends on the level of 
the Information available about their operation. Measurements and predlc- 
tlons about the state of the system and-the medium with which lt interacts, 
as well ,as the control signals, Inevitably contain uncontrolled components 
as, for example, random Instrument errors, disturbances, etc. Thus, lnfor- 
matlon on the past, present, and future of systems can be complete only to 
the extent that data about random events are complete. Hence, the oPtlmlza- 
tlon of controlled systems Is not In the final analysis reducible to the 
optimum averaging of their controls In the sense that one must necessarl1Y 
be concerned with the appropriate formation of the average control sIgna 
value, which must be the same for all states attainable by the system as 
long as the latter do not exceed certain limits, e.g. the dead zones of the 
measuring devices. The optimization criterion must provide for the attaln- 
ment of the extremum by one of the averaged system characteristics cl and 4. 

We should also bear In mind another aspect of the question, namely the fact 
that certain systems are designed for use under various conditions and for 
the fulfillment of different tasks while employing the same control algorithm. 
Here we must naturally see to It that the control minimizes the average loss 
engendered under the various conditions of system operation [3]. 

The problem of optimum averaging of controls has several different aspects. 
Essentially, It can be made to encompass the deterministic formulation of 
the problem as one which corresponds to the minimum level of utilization of 
Information about the true conditions of process realization as represented 
solely In terms of the mathematical expectations of the determining functions 
and parameters. 

We shall develop the notion of optimum controls averaging as conceived In 
[l to 'r] and suggest a general method of solving problems on the basis of 
the principle of optimum controls averaging (Theorem 2) which we shall prove. 
This opens the way for the formulation and solution of new practical prob- 
lems. 

Thus, In Section 4 we shall analyze the previously untreated problem of 
optimizing programed control systems "as a whole", I.e. with the undisturbed 
motion and the disturbed motion control law optimized In accordance with a 
single criterion with allowance for their lnterrelatlonshlps. 

The mechanical basis and one of the possible areas of application of the 
theory to be developed are also characterized by the following stochastic 
variant proposed In [5] wherein the object is to find the reactive accelera- 
tion u - u(t) of a point of variable mass moving in a forceless field with 
a constant expenditure of energy and a minimum value of the functional 
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under the conditions that the position x1= xl(t) , velocity x2- x2(t), and 
the point control objective are described by Equations 

Xl = 22, 5'2 = li, Xl (to) = 2107 22 (to) == 120 (0.‘) 

%(t,) = q1. 52 (4) = 3J21 (0.3) 

Here to, t,, ziot zil (i = l,n)'are specified. In reality xl, xa are usually 
random functions of time, defined by equations which 
replace system (0.2), 

51 = x, (Q, 52= x2 (0, 
(0.4) 

X', = x2, x.2 = u + .l + El + E2, Xl (b) = x10 -1 Ll, x2 (43) = Go + L2 

Here L1, LZ are random perturbations in the parameters of the Initial 
state of the point; ~1 is the reactive acceleration produced by the correc- 
tive arrangement In accordance with the realizations of L,, L, and Intended 
to compensate for the consequences of random perturbations in the parameters 
of the point's Initial state; <,= c,(t) Is the error Involved In the repro- 
duction of the reactive acceleration. It Is a random f ctlon of time which 
can be represented in the form of a'canonlcal expansion ?6] with determined 
coordinate functions t,,(t) and random coefficients P,, . 

Since the control signals u and u1 are formed Independently of the 
reallzatlons of c (t) It follows that exact fulfillment of boundary condl- 
,tl;n; ;;o;h;o;;;;l~;~3t, lje. X,(t,) - xll, X,(t,) - xp Is Impossible. 

0.3 we must seek fulfillment of the relations 

M (Xl1 IL17 L,) = x11r fil (X21 IL, L,) = 221 

or 
M (Xi1 - Xi1 I Ll, LA = O (i = 1, 2) (xil = xi (h)) (0.5) 

Here M(Xi, - xi1 IL,, L,) Is the conditional mathematical expectation of 
the random quantity III-- xI1. 

The control quality can be naturally evaluated by way of the functional 
f, 

J =M 1s [(u + <I)~ f a (u’+ F,2)2] dt 

f” 
(0.6) 

Introducing the function X,(t) as determined from Equations 

X's = (u + B)" + a (J + EA2, X, (to) = 0 (0.7) 

we obtain 
J = M (X21) (A-2, = x, (Q, a = const> 0) (0.8) 

We now see that the example of [5] In the stochastic variant which we 
have been considering Is reducible to the solution of the following specific 
optimum problem: for system (0.4), (0~7) we are to find control functions 
u = u (t), IL1 = u* 
conditions (0.5). 

(t, Ll,L,), which minimize functional (0.8) with boundary 
It Is easy to see that this problem Is a particular case 

of the problem whose formulation and solutlon,ls the subject of the Present 
paper. 

1. Let there be a controlled system designed to realize the functlonals 

Ji = fi (Xl, U, ~‘9 T’, P, L) (i =o, . . .) k,) (l.i) 

defined by the equations of motion 

Xi’ = (pi (t, X, U, Vzv P, L), Xi (tol) = $i (p* L), x1 = [Xi1 = Xi (tl’)l 
(t& < t < t$; i = 1, . . ., n) (4 -2) 

Here x = (x,,..., K.) Is a continuous random vector-function; 
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TZ = (Q, t,“), v=[a=(a~),u=(uj)] (;=I ,..., nz; j=l,..., r) 

d = [a’ = (up), d = ($)j (i=l, .~., nz$J; j=l, . . . . t*) 

are the control parameters; a = const ,' and U = U (t), .I = UI (t, L), 

u' = a"(L), T1 = T’ (I,) are from the open kernel of the domain u of 

bounded piecewise-continuous piecewise-smooth functions with a finite number 

of discontinuities; fl, q%, Jr*, .f and their first and second derivatives 

are continuous functions; JJ = (P,'), L = (L,) are random parameters deter- 

mined in the domains a, and !& , respectively, by the distribution den- 

sity f = fP fP f l)fr (l), where Jbfp/i) is an arbitrary law of P distribu- 

tion. 

Let us emphasize the difference between the controls v and vl, T’: the 

former is formed independently of the realizations of P, L, defining the 

program of motion and the nominal structural parameters of the system; the 

second does not depend on P but takes Into account the realizations of L 

and thereby possesses controlling properties. 

As we see, functionals (1.1) are random quantities whose characteristics 

are determined not only by the values of P and L , but also by the form 

of the control V, V’, T1. The purpose of many controlled systems can be ex- 
pressed in the form of Equations- 

M Ifr (XI, a, 6 T”, P, L)l = 0, ~4 ffj (XI, a, at, T’, P, 
(i=l,..., k; j=k+i,...,k,) 

and their quality evaluated by means of the functionals 

JE = M ~fof&, a, at, TE, P, L) 111 

J = ~4 [fo (X,, a, .‘, T’, P, Qlj 
Here M Is the symbol for the mathematical expectation; 

conditional mathematical expectation of the random quantity 

T", P, L). 

If there exists a family of permissible controls of system (1.2) (I.e. 

controls which satisfy (1.3)), then we can pose the problem of choosing that 

control which minimizes functional (1.5). This control can be called average- 

optimum control, and the process leading to Its determination referred to as 

the solution of the problem of optimum averaging of the control for system 

(1.2). 

2, The possibility of constructing a family of permissible controls and 

the principle of optimum averaging of the control V, d, T’ are established 

by two theorems. 

The 

exists a 

ranks of 

0 r e m 2.1 . If v, v”, T’ is a permissible control_, then there 

family of permissible controls which Includes v, vl, T’,I If the 
the matrices 

B11 * a. B 1, xtm 

A= . . . . . . . , A'= (24 

Bkt * . - Bk, x+m 
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are equal to k and I/ = &-- k , respectively. 

Here 

(i, j-1, . . .,y) 

a*,, 
G1 r 

D 
a@) 

atrj= 

10 
I s=l aul “gj dt* 

ax,, 
tll 

F= s 

aft(V) 

4 

Tp 
i=l 

In the above, Expreselone Ai( aa,’ / 8aj, au,‘/ 8aj are defined by Equa- 

t ions 

(i=k+l,...,k,,; j-i ,..., x; s=i, . . . . m) 

Here 6{, la the Kronecicer delta; 8U,j (t), 8U.j’ (t, L) are arbitrary 

functions from U . 

Theorem 2.2. If the conditions of Theorem 2.1 are fulfilled, 

then there exlrrta a vector function A - (A,, . . . , A. ) and multipliers clo- 1, 

~1,’ conat , vLJ- vr ( L) (2 - I,..., k i j - k + l,..., kO) relative to which 

the optimum control v, v', T1, which maximizes (minimizes) functional (1.5) 

ha8 the following properties: 

a) It minimizes (maximizes) the function M“ IH (t, X, v, d, P, 
L, A)] of the vaAable u for any of the t realized; 

b) It minimlees (maximizes) the fun&lone 

M [H (t, X, v, d, P, L, A) 1 II 
of the variable u1 for any t, t’,, < t f t’, aad L c !&; 

c) It satisfies the relations 



785 

Jf=&%+. . .+A,& (i=i, . . . . m; s=f, .._, me) 

Here p(H) denotes that part of the integral which determines ff(H) , 

where I satisfies the inequality t’s (8) < 8 < t’, (I); the random conti- 

nuous vector-function A = (A,, . .., h,) is determined by Equations 

A;=_$, 
h 

4 
Ai @I’) = Aa = - x pj -g++ (i = 1, . . ., n) P-5) 

j==O 41 

3. Let us cite the schemes which csn be used to prove Theorems 2.1 and 
2.2. Let v,vl,Tt be the permissible control of system (1.2) to (1.5). We 
shall now consider the control 

(r’, vi*, P) 5 [u* = U (1) + &4(f), u* = a + so, ui* = UL (6 L) + 6u’ (6 L) 

a ‘* = al (L) + 6a’ (L), T’* = T’ (L) + 8T’ (L)] 

from U . Here ET = fur (t)), 2ii = [a'j (&A)1 (i = 1, . . . . r, i = 1, . . . . Fe) for any 
fixed L are considefed supplemented in their definition beyond the limits 
of the segments [go, t 1] with preservation o i; the eon~~uity and continuous 
differentiability at the points t = tie, t = t %; I%+ &U j are of the form 

everywhere except an arbltrarlly small segment [t’, t”], t”- t’- T 2 0 , 
where 

6Uj = Wj - Uj, &Uj’ = Oj’ - Uj'; 6Uj{(t), dUfi'(tl L) 

0 = bi(Ulr rd=[t~~'(t, L)], &b(L), 6T’ (L) 

are arbitrary functions of the corresponding arguments, and a,~, u!, d, are 
considered continuous on the interval (t’, t”) ; 

8% dOz7 6y’, r, a = (aI, . . ., (Lx )t a’ = (aIt, . . . , a:,_& 
are arbitrary vectors. 

Substituting at, z+*, T’+ In (1.2) we find the trajectory X*- (X*,,... 
**., X.*), where XT are known functions of the arguments 

t, y = (~4) G (at, a’,, aat, da*‘, bt’i, 7). 
The control v*, VI*, T1’ can be considered permlsalble by 
satisfy Equations 

M Ui (XI+, a*, al*, T’*, P, L)] =o (i=i,...,k) 

M IfiFl”, a*, a ‘* T’*, P, L) 1 I] = 0 , (i = k + I,. . ., ko) 

since v, vl, Tl Is Equations (3.1) and (3.2) have the solution v I 0 , 
a permissible control. By virtue of the agreed assumptions about the pro- 
perties of the functions ft. rpi, IJQ, ZQ* ~‘~a, the rules of supplementary defl- 
nition of U, uil beyond the limits of the segmsnts [rp, tgl) and by the isolation 
of the Interval (t’, t’) , their left sides are continuous and continuously 
differentiable with respect to y Hence, the theorem on the existence 
of the implicit functions of Equa&n (3.2) oan be use4 to dete@ne the 
continuous and continuously differentiable Pun&ions a j (j= 1, . . . . &.) of the 

definition if y, 

(X1’ =X*(tl[*)) @.I) 
(3.2) 



‘(89 1u.V. Kozhevnlkov 

variables Uj, ba,, (\Ll'j, h//j, T. I., provided the rank of the matrix 

‘/I’* .-_[M(~~l)jy ” (i, i== 1 1...1 Y) 

IS 

by 
Of 

Is 

y = k,= k . 

In precisely the same way system (3.1), where d'j(i = I,..., y) are deflned 
Equations (3.2), determines the lmpllclt functions c,, 6a, if the rank 
the matrix 

. . . . . . . . . . . . . . . . . . . . . . . . 

y 3) . . * y=lJ . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

k . 

Writing out the expressions for the elements of the matrices A’*,A*,. we 
see the validity of the Identities A* =A, AL* =A1, where A and A' are 
defined by relations (2.lj to (2.3). *Thus there exist yi not simultaneously 
equal to zero whl;&dsa;:sfy Eqpt;;is 
the matrices A are 

F.1) and (3.2) provided the ranks of 
But In this case 

there exists a permissible control (u*, v'*,T'*)#(s, r, 
V, vl, T1 for y = 0 . 

, respectlve+y.Tl), 
which contains 

Theorem 2.1 has been proved. 

Let us suppose now that v, 2, z, Tz Is a permissible control which satisfies 
the conditions of Theorem 2.1 and maximizes functional (1.5). There then 
exists a family of permissible controls In which 

AJi = M [fi(X,*, a*, a'*, T’*, P, L) - fi (Xl, a, a’, T’, P, L)l = 

xtj 
6aj +- i Bijf + 3 Bija + Bit + s 

j=O I=1 

(i 10 
7. .1 k) 

i “‘I(+_+ 2 
k”-k ax,, aayr 

“El ax”1 y=l aa,z at 
AJo=AJ<O, AJi=O (i=.i,. . :, k) 

than the first order of smallness; the 
are computed for y - 0 . The functions 

are determined by Equations (3.2), 

satisfy Equations 

(3.3) 

(3.4) 
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hl _..%(B kdi ax,, aayl 
+’ 2, 

Vl 1 

--)+ --$]p}=o 
y=l aa,’ atj' 

. 
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(3.5) 

i=k+l,. . .,ka 
j=t,. . .,x 

( 
i = k-i- 1,. . ., k. 

i=I,.. .,m 1 

( 

i=k+f,...,k@ 
j = t,..., ino 1 

i=k+I,...,k,, 
j=o. 1 

(3.6) 

(i=k+l,.. .,k,) 

. 
It is evident that the following relations are valid: 

ax,, 
- = 

aaj' 

am;, - = [ffW - j$‘) It, 
ax,, 

a$ (to’\<t’<tl% - z.zz 0 at (to’-> f, t,r 5 f’) 

a-%, a-5, -=- - zz.2 H@) ] t 

Here ato at,’ I’ 

p, Ll 
i=l i=l 

nj"'(tt')= 6, (i, v = 1,. . 1, n) (3.7) 

Taking account of (3.3), we obtain the required condition for the maximum 
of functional (1.5), 

(3.8) 

Here pO= 1, v~,..., p* are constant nonrandom Lagrange multipliers. 
Since the condition of Theorem 2.1 ac regards the rank of the matrix A Is 
assumed to be fulfilled, the multlpfizrs Us,..., wr can be chosen on the 
basis of the condition whereby k coefficients of a 
hand side of (3.8) vanish. 

Ea, In the rlght- 
The remaining term in (3.81 Is Independent and 

arbitrary. Hence, taking account of the Inequality T P 0 , we have Instead 
of (3.8) that .k k k 

x ~$4~ = 0. 5 ~$4,” - 4 x P&’ = 0. x P& \< 0 
(3.9) 

i=o i=o i=o i=o 
(j= 1,. * ., x-!-m; s=O, 1; ~=i,...,m~) 
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Let UEI multiply each equation In (3.5) with the subscript t by some 
indefinite Lagrange multiplier u,(L) (t = k + l,,.., ke) , find the mathema- 
tical expectation of the results of multiplication, and sum them over t 
for a fixed J In each group expressions 
which are equal to zero to the , we find 
that 

(i=f,...,mf 

-f=l v=13=0 

(i = 1,. . ., m) 

The condition of Theorem 2.1 as re ards the rank of the matrix . is 
fulfilled, 80 that the quantities u'i L) $ (t = k + l,..., ke) can be found 
from Equations 

(y=i,...,ko-k) (3.11) 

We set 

Vl , @Av,=A, (r,i=I,...,ra) 

v=l 

Then, taking account of (3.7), we have 

(i, v = 1,. . .) n) 

Relations (3.10) and (3.11) can now be written as 

M 

tJ a=ll (3.12) 
(~=I,..,,x; i=i,...Iko-k) 
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(3 14) 

M" [H* --HI,* 2 0, ff*=$J Aiqc(t, X, w, a, cd, a’, P, L) (3.15) 
i=l 

Inequality (3.15) follows from the last relation of system (3.10). In 
fact, the trl le sum In square brackets in this relation Is equal to zero 
by virtue of P 3.11), while the remaining terms vanish for all t , where 
t&i) >, r", $0) e t', since here ax,, /at= 0 (see (3.5)). 

It Is clear that relations (3.13)' can be written as 

(j = 1,. * ‘rn”) 

Hence, taking account of the arbitrariness of the functions 6&'(j), &l'(j), 
bail(Z), we obtain 

Relations (3.14) and (3.16 
The validity of conditions 
1tY (3.15). 

(a 1 
coincide with conditions (c) of Theorem 2.2. 
and (b) of this theorem follows from lnequal- 

In fact, since w and ~2 are independent, we find from (3.15) 
that 

M” [H (t, X, co, a, ul, at, P, L, A) - H (I, X, u, a, u', tit, P, L, A)],, >,O (3.17) 

M" [H (t, X, u, a, cd, a’, P, L, A)- H (1, X, u, a, IL’, a’, I’, L, A)lt, > 0 (3.18) 

(3.17) Implies condition (a) of Theorem 2.2 directly. 

Let us suppose there Is a situation contrary to that stipulated ln condl- 
tlon (b) of Theorem 2.2, I.e. that there Is a point (L, tf = (I', t') where 

M([H(t, X, I, a, ol, of, P, L, A)-H(t,X, u, u, u’, a’, P, L, Afj J I)IP,r. <O (3.19) 

Then, by virtue of the continuity of If with respect to tiji and the 
plecewlse continuity of ~l(t,L.) , 
which Includes the point t I I', 

It Is possible to find a segment cd*, 1**] 

The function ~0~ 
where the Inequality sign In (3.19) remains 

can be chosen In such a way that it differs from 
the segment [d*, L**J . 

unchanged. 
24' only on 

Hence we 
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which contradicts.conditlon (3.18). It remains for us to accept the validity 
of condition (b) of Theorem 2.2 and thereby the.valld1t.y of all the state- 
ments comprlslng the theorem. In conclusion we note that Equations (3.12) 
are satisfied identically by virtue of condition (a) of Theorem 2.2. 

4. In addition to solving several new problems In statistical dynamics, 
the above results also make It possible to formulate a new procedure for 
synthesizing program control systems -which, in contrast to the existing tech- 
niques, enables to solve a problem ltas a whole' when the programed motion 
and the transient process control law we optimized from general methodolo- 
glcal standpoint with allowance for their Interrelationships with respect 
to a single criterion. The scope of the present paper requires that we 
explain only its oaslc features as Illustrated by the following highly spe- 
clflc example. 

Let there be a controlled object 

X’ = aX + BW, X (to) = Xcl, X (t1) = Cl, t, < t < t1 (4.1) 

Here 2, Cl, to, t, are known numbers; B, X0 are speclfled continuous 
random quantities with the mathematical expectations rnb, mr,; W is the con- 
trol signal. 

We know that If the control objective is achieved under the programed 
conditions, the IV can be represented In the form W = U+ uz, where u= u(t) 
Is the constantly realized programed part of V , and ,I = $(t, X,, . ..) is 
the control signal whose purpose Is to compensate random disturbances, which 
in our case happen to be the deviations B"= B - mb, Xoo= X0- rnxo. The 
trajectory of the object X Is here subdivided Into the programed component 
X, and the disturbed component Xp= X - X, , which are given by Equations 

X1' = aXI+ mb u, X1 (to) = mti, x, (tl) = M (X,1) = c, (4.2) 

X,’ = ax, $ Bu’ + B’u, x, (to) = Xc?, X, (tl) = M (X,, lb, q) = 0 (4.3) 
1 

Existing methods of synthesizing u, u1 are characterized by the choice 
of programed notion Independently of the disturbed motion. This opens the 
way for lnadmlsslble solutions. For example, let a control process be optl- 
mlzed with respect to the energy expenditure described by the functlonals 

LI t, 

J0=g0 uVt, 
s 

J1 =g1 ’ Pa, 
s 

gi=const>O (i=O, 1) 

to t, 
In the programed and disturbed motions, respectively. Independent mlnlmlza- 
tlon of these functions generally does not maximize the total energy exPen- 
dlture, since, as Is evident from (4.3), the characteristics of disturbed 
motion depend on the programed motion. It Is more expedient, therefore, to 
optimize U, I& by mlnlmlzlng a functional of the form 

or by some other criterion which affords a notion of the overall energy loss. 

We shall show that the optimization of u, ~4~' relative to criteria of the 
form (4.4) can be attained by the methods of the theory we are developing. 
We Introduce the function X3(t) defined by Equations 

X,'= g,uz + g&r, x, (to) = 0 (4.5) 

Then Instead of (4.4) we can write 

J= M (X,3 (4.6) 

Now the problem of synthesizing control of object (4.1) reduces to the 
solution of the following optimum Droblem: for system (4.2), (4.3), (4.5) 
we are to find the control u(t), u[(t, X,, . ..). which mlnlmlzes functional 
(4.6). It Is clear that this problem 1s of the form considered In Section 
1, where 
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Ii - 3, li = 1, ,+, YZ L’, 

p1 = 0X, + m&u, ip2 = 

fo = x31* 
It can be solved by applying 

have 
fi = -4, (ax, -,- m@) + 

dH 112 =--=-a&, 
ax2 

I, - (Li) T? (8, X,), t,1 = r,, ‘I’= 1, 

ax, ;- BlJ ; 8 ‘it, pi = g& + g&2 

fl = Xl1 - C’,, fZ z A-,, 

the conditions of Theorem 2.2, whereby we 

AZ (aX, -+ Bu' + B'u) + A,(gOu~ + g,dz) 

BA, + 2gIA,d = 0 

Hence we obtain 

BA2 
u'=-- z - _,o(t,-t) 

BP2 

a1 43 

(4.7) 

(4.8) 

Substituting Expressions (4.7) and (4.8) In the right-hand side of (4.3), 
integrating, and satisfying the boundary condition X=- 0 , we find that 

4a (4.9) 

From this we have 

where 

M (* )-= g&O - glmbhh 
2 

go + Ml 
(4.10) 

Integration of Equation (4.2) with allowance for Expressions (4.7) and 
(4.8) and subsequent satisfaction of the boundary condition X1,- C, makes 
it possible to write the following expression for the multiplier p,. : 

go + gl Z?I 

[ 

40 (cl - rnd e" ftf-fsf) DO 

w= mb 
mb($ - em(t*-t*f) -go -!- g1.h 1 (4.llY 

ComPutlng pl, M(B’k from Formulas (4.10) and (4.11) and substituting 
the results Into Formula 
The optimum control law 

f$nd the optimum Program of motion U(t). 

be found from (4.9) with 
. ..) of the disturbed motion Xp can 

f"dr (4.8) upon replacement of X+$-X:, to 
in (4.9) by the instantaneous values of XZ, t in the form 

In conclusion we note that the principle of average optlmality implies 
the conditions of determined systems optimization as the limiting cases when 
the domains of realization of the random parameters are contracted to points. 
Among.these implications Is the maximum principle as formulated by L.S.Pon- 
triagin. 
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